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Abstract. The climatic implications of regional aerosol and
precursor emissions reductions implemented to protect hu-
man health are poorly understood. We investigate the mean
and extreme temperature response to regional changes in
aerosol emissions using three coupled chemistry–climate
models: NOAA GFDL CM3, NCAR CESM1, and NASA
GISS-E2. Our approach contrasts a long present-day con-
trol simulation from each model (up to 400 years with per-
petual year 2000 or 2005 emissions) with 14 individual
aerosol emissions perturbation simulations (160–240 years
each). We perturb emissions of sulfur dioxide (SO2) and/or
carbonaceous aerosol within six world regions and assess
the statistical significance of mean and extreme tempera-
ture responses relative to internal variability determined by
the control simulation and across the models. In all mod-
els, the global mean surface temperature response (pertur-
bation minus control) to SO2 and/or carbonaceous aerosol
is mostly positive (warming) and statistically significant and
ranges from +0.17 K (Europe SO2) to −0.06 K (US BC).
The warming response to SO2 reductions is strongest in the
US and Europe perturbation simulations, both globally and
regionally, with Arctic warming up to 1 K due to a removal
of European anthropogenic SO2 emissions alone; however,
even emissions from regions remote to the Arctic, such as
SO2 from India, significantly warm the Arctic by up to

0.5 K. Arctic warming is the most robust response across
each model and several aerosol emissions perturbations. The
temperature response in the Northern Hemisphere midlati-
tudes is most sensitive to emissions perturbations within that
region. In the tropics, however, the temperature response to
emissions perturbations is roughly the same in magnitude as
emissions perturbations either within or outside of the trop-
ics. We find that climate sensitivity to regional aerosol per-
turbations ranges from 0.5 to 1.0 K (Wm−2)−1 depending on
the region and aerosol composition and is larger than the cli-
mate sensitivity to a doubling of CO2 in two of three models.
We update previous estimates of regional temperature poten-
tial (RTP), a metric for estimating the regional temperature
responses to a regional emissions perturbation that can facil-
itate assessment of climate impacts with integrated assess-
ment models without requiring computationally demanding
coupled climate model simulations. These calculations in-
dicate a robust regional response to aerosol forcing within
the Northern Hemisphere midlatitudes, regardless of where
the aerosol forcing is located longitudinally. We show that
regional aerosol perturbations can significantly increase ex-
treme temperatures on the regional scale. Except in the Arctic
in the summer, extreme temperature responses largely mir-
ror mean temperature responses to regional aerosol perturba-
tions through a shift of the temperature distributions and are
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mostly dominated by local rather than remote aerosol forc-
ing.

1 Introduction

Understanding regional climate responses to present and fu-
ture anthropogenic forcing agents remains a key challenge of
direct relevance to human and natural systems. Emissions of
aerosols and their precursors are spatially heterogeneous and
short-lived and thereby expected to exert complex responses
as emissions of air pollutants are reduced through policies
enacted to protect human health. Emissions of sulfur diox-
ide (SO2), black carbon (BC), and organic carbon aerosol
(OA) have decreased throughout the United States and Eu-
rope for several decades (Leibensperger et al., 2012; Tørseth
et al., 2012). On the other hand, emissions have largely in-
creased in recent decades in countries such as China, India,
and others in the Global South; however, since 2013, emis-
sions of SO2 have begun to decline at least in China, while
emissions in India continue to increase (Fontes et al., 2017;
Li et al., 2017; Lu et al., 2011; Samset et al., 2019). As emis-
sions of anthropogenic aerosols and their precursors are re-
duced in high-emitting regions such as China, their reduc-
tion is expected to perturb regional and global temperatures
(Kasoar et al., 2016). To improve future climate projections,
a deep understanding of the magnitude, spatial pattern, statis-
tical significance, and physical mechanisms of the tempera-
ture response to a phasing out of both scattering and absorb-
ing anthropogenic aerosols is needed. Here we address this
need by simulating the local and remote mean and extreme
surface temperature responses to removal of different com-
ponents of anthropogenic aerosols from six world regions in
three distinct Earth system models.

The net effect of removal of global emissions of all an-
thropogenic aerosols is a surface warming, as decreases in
aerosol scattering result in additional solar energy reaching
the surface of the Earth (Myhre et al., 2013). Removal or re-
duction of scattering aerosols on the regional scale will also
result in surface warming on average. However, removal of
global and regional emissions of black carbon or other ab-
sorbing aerosol is generally expected to induce a cooling at
the surface, due to a net reduction in the absorption of in-
coming solar radiation (Bond et al., 2013; Ramanathan and
Carmichael, 2008; Samset et al., 2018). In addition to influ-
encing surface temperature directly by scattering or absorb-
ing incoming solar radiation (aerosol direct effect), aerosols
also indirectly influence surface temperature by modulating
cloud properties such as brightness and lifetime (aerosol in-
direct effects) (Albrecht, 1989; Twomey, 1977). Regional
emissions perturbations of both scattering and absorbing
aerosols also exert significant local and remote precipitation
responses (Westervelt et al., 2017, 2018), though here we fo-

cus primarily on mean and extreme surface temperature re-
sponses.

Several previous studies have considered the global and
regional climate response to global reductions in aerosol and
precursor emissions using transient future simulations (e.g.,
Gillett and Von Salzen, 2013; Levy et al., 2013; Samset et al.,
2018; Westervelt et al., 2015), finding a robust increase of
up to about 1 K of surface warming by 2100 in response to
decreasing aerosol burden. Recently, additional studies have
quantified mean surface temperature responses and radiative
forcing to regional emissions changes of aerosol (Murphy,
2013). Kasoar et al. (2016) used three global climate models
to estimate the global and regional surface temperature im-
pacts from the removal of Chinese anthropogenic SO2 emis-
sions, finding hemispheric warming in two of the three mod-
els. Conley et al. (2018) also used three climate models to
estimate the mean surface temperature response to a removal
of SO2 emissions from the United States alone, with warm-
ing over the United States and in the Arctic found to be as
high as 0.5 K. Persad and Caldeira (2018) used the NCAR
CAM5 (Community Atmosphere Model 5) to show that cli-
mate responses to identical aerosol emissions changes are
significantly different depending on the region where emis-
sions are perturbed. Using a different model and a different
emissions perturbation format, Kasoar et al. (2018) find simi-
lar patterns of mean surface temperature response to aerosols
from different regions. Both Kasoar et al. (2018) and Persad
and Caldeira (2018) used a single model to estimate the tem-
perature responses to regional anthropogenic aerosol emis-
sions.

Reductions in regional aerosol emissions may also influ-
ence temperature extremes; however, the magnitude, statisti-
cal significance, and physical mechanisms of the greenhouse
gas and aerosol impact on extreme events are also poorly un-
derstood (Horton et al., 2016). The Intergovernmental Panel
on Climate Change Special Report on Managing the Risks
of Extreme Events and Disasters to Advance Climate Change
Adaptation (IPCC SREX; IPCC, 2012) identified forcing fac-
tors that are important on regional scales (such as aerosols)
as a key challenge to further understanding of the anthro-
pogenic causes of extreme temperature change. Recent stud-
ies have found a role for global aerosol reductions in heat
waves (Zhao et al., 2019) and also in temperature extreme
indices (Mascioli et al., 2016; Samset et al., 2018) as defined
by the Expert Team on Climate Change Detection and In-
dices (ETCCDI) (Sillmann et al., 2013). To our knowledge,
the extreme temperature response to regional aerosol emis-
sions reductions has not been previously studied.

In addition to understanding the changes in mean and ex-
treme surface temperature response to aerosol reductions,
it is vitally important to understand the effective radiative
forcing (ERF) induced by aerosols and how ERF relates to
temperature response. ERF includes the instantaneous top-
of-atmosphere radiative forcing plus rapid adjustments, i.e.,
the radiative impacts on the top-of-atmosphere energy bud-

Atmos. Chem. Phys., 20, 3009–3027, 2020 www.atmos-chem-phys.net/20/3009/2020/



D. M. Westervelt et al.: Temperature response to aerosols 3011

get which are not related to surface temperature. Radiative
forcing exerted by anthropogenic aerosols is far more spa-
tially inhomogeneous than that from well-mixed greenhouse
gases, making generalization of the climate responses to an-
thropogenic aerosol emissions changes a more difficult task
(Shindell, 2014). Additionally, radiative forcing in one region
may result in different temperature response in local regions
compared with remote regions. Shindell and Faluvegi (2009)
began to address this by using an early version of the God-
dard Institute for Space Studies ModelE chemistry–climate
model to estimate temperature responses per unit of radia-
tive forcing for forcing perturbations in several wide lati-
tude bands. Shindell (2012) also used these latitude bands
to further develop the regional temperature potential (RTP),
a temperature response metric normalized by aerosol ERF to
provide estimates of regional temperature change. More re-
cently, Lewinschal et al. (2019) used NorESM (Norwegian
Earth System Model) to calculate similar metrics based on
emissions. Simple climate metrics such as RTP coefficients
can be used in the integrated assessment modeling (IAM)
and climate impact community to rapidly and easily calcu-
late the climate impact of different energy or climate miti-
gation policies without requiring computationally expensive
coupled climate model simulations. Thus far, metrics such
as RTP incorporated into IAM have been based on simula-
tions with a single climate model. Future climate projections
can benefit and improve from a multi-model approach that
enables more robust estimates of mean and extreme regional
surface temperature responses per unit of radiative forcing
from a given region.

The relationship between surface temperature response
and associated ERF is not well understood for individual
short-lived forcing agents such as regional aerosols. The cli-
mate sensitivity parameter, or the ratio between the temper-
ature response to an external forcing and the forcing itself
(K (Wm−2)−1), is a widely used metric essential for project-
ing future climate change (Myhre et al., 2013; Marvel et al.,
2016; Previdi et al., 2013). Estimation of equilibrium climate
sensitivity (ECS) using coupled models has mostly occurred
in the context of a doubling (or quadrupling) of CO2 concen-
trations (2×CO2) (Arrhenius, 1896; Callendar, 1938; Cox
et al., 2018; Huber et al., 2014; Knutti et al., 2017; Knutti
and Hegerl, 2008; Knutti and Rugenstein, 2015; Otto et al.,
2013). A few studies estimating the ability of single forc-
ing agents to change surface temperature (sometimes called
“forcing efficacy”) have found that anthropogenic aerosols
have a greater forcing efficacy than CO2 (Hansen, 2005; Mar-
vel et al., 2016; Shindell, 2014). These findings, however,
have come from single models using global reductions in
aerosol and precursor emissions, despite substantial regional
dependence and heterogeneity of aerosol forcing. Estimates
of ECS based on modeling and modern and paleoclimatic
observations should take into account the forcing efficacy of
regional aerosol perturbations, which our approach can help
inform.

We improve on past work by conducting an extensive
set of computationally demanding simulations in three (in-
stead of one) Coupled Model Intercomparison Project Phase
5 (CMIP5) chemistry–climate models in which emissions of
SO2, BC, OA, and a combination of all three are set to zero
or significantly reduced in one of six world regions (instead
of latitude bands). Using these simulations, we estimate the
local and remote regional surface temperature responses to
reduced or removed aerosol and precursor emissions. We ag-
gregate our results in each model to provide an estimate of
robustness of the regional surface temperature response. In
order to compare the surface temperature responses across
models, regions, and forcing agents (including aerosols but
also carbon dioxide) and to provide updated estimates of
regional temperature response metrics as done in Shindell
(2012), we estimate the climate sensitivity for a given region
and forcing agent in each of our models, on a global and
regional basis. We also report for the first time the extreme
surface temperature response to regionally specific emissions
reductions of aerosols and their precursors in three climate
models.

2 Methods

2.1 Models and simulations

Our modeling framework has been previously described by
Westervelt et al. (2018), Westervelt et al. (2017), and Conley
et al. (2018). Briefly, we employ three coupled atmosphere–
ocean–land–sea ice climate models with fully interactive
chemistry of aerosols and trace gases: (1) Geophysical Fluid
Dynamics Laboratory Coupled Climate Model version 3
(GFDL CM3) (Donner et al., 2011), (2) Goddard Institute for
Space Studies ModelE2 (GISS-E2-R) (Schmidt et al., 2014),
and (3) Community Earth System Model version 1 (CESM1)
(Neale et al., 2012). The model configuration for each is very
similar to that used for CMIP5. For further model descrip-
tion and model evaluation, we refer readers to Westervelt
et al. (2017) and Naik et al. (2013). Only CESM1 includes
prognostic simulation of aerosol size distribution (Conley
et al., 2018, and references therein). Of particular relevance
for our results is the model treatment of black carbon. In
GFDL CM3 black carbon is internally mixed with only sul-
fate in the radiation code, whereas in CESM1, black carbon is
internally mixed with all aerosol constituents within a given
aerosol mode. In GISS-E2, black carbon is externally mixed
with other aerosol species (Schmidt et al., 2014).

We conduct for each model a long “present-day” control
simulation of up to 400 years in length, forced by perpet-
ual year 2000 (2005 for NCAR CESM1) conditions, includ-
ing all emissions of aerosols and their precursors and green-
house gas concentrations. We also conduct individual re-
gional aerosol perturbation simulations of at least 160 years
and as long as 240 years in each model, in which the anthro-
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pogenic aerosol or aerosol precursor emissions for a certain
region are completely removed (100 %) or reduced by the
amount shown in Table 1. Aerosol emissions removals are
instantaneous and we do not consider the effect of a long
time-evolving drawdown. The first 20 years of the pertur-
bation simulations are discarded in the response calculation.
We choose the magnitude of relative emissions reductions
in order to have roughly equivalent emissions decreases for
a particular species across regions and models. As an exam-
ple, “ISO2” refers to a simulation with perpetual year 2000
conditions (2005 for NCAR CESM1), perturbed by setting
all anthropogenic SO2 emissions over India to zero. Other
than the regional aerosol emissions perturbation, all other
model settings remain identical to the control. Long control
and perturbation simulations allow us to establish statistical
significance and separate forced responses from internal cli-
mate variability.

We also conduct a set of simulations for each perturba-
tion and control in each model using modeled climatological
fixed sea surface temperatures (SSTs) and sea ice cover (SIC)
in order to calculate ERF. These simulations only use the at-
mosphere and land components of the climate models and are
not coupled to the ocean and sea ice models but are otherwise
identical to our longer coupled model integrations. ERF is
determined by differencing the perturbation simulation mi-
nus the control simulation. Estimates of ERF performed in
this manner include the instantaneous radiative forcing plus
the rapid adjustments from the atmosphere and the land. For
the aerosol perturbation simulations, the ERF is calculated
based on 50 years of simulation data for CESM1, 80 years
for GFDL CM3, and 160 years for GISS-E2 (to allow detec-
tion of a smaller forcing observed in that model). The ERF
associated with a doubling of CO2 (2×CO2) is also calcu-
lated using the fixed-SST method from simulations similar
to 4×CO2 fixed-SST simulations conducted for the CMIP5
experiments. For comparison, the present-day minus pre-
industrial aerosol ERF in CESM1, GFDL CM3, and GISS-
E2 is −1.52, −1.60, and −0.76 Wm−2, respectively (Allen
et al., 2015). This version of the GISS-E2 model does not in-
clude the aerosol–cloud lifetime effect, resulting in a smaller
ERF, as discussed below.

2.2 Statistical methods

We estimate the change in surface temperature between the
control and perturbation simulations as the cotemporal an-
nual mean differences (perturbation minus control), and we
perform a paired sample modified Student t test where the
pairs are cotemporal samples of the perturbation and the
control. The modified t test accounts for autocorrelation in
the model surface temperature time series by calculating an
effective standard error, which utilizes an effective sample
size based on the lag-1 autocorrelation. A time series show-
ing autocorrelation overestimates the number of indepen-
dent samples when calculating statistical significance, but

our approach, based on Conley et al. (2018) and Zwiers
et al. (1995), corrects against this overestimation. We also
use the false discovery rate procedure of Wilks (2016) on our
t tests over our gridded atmospheric data, which limits the
fraction of erroneously rejected null hypotheses in a field of
mutually correlated t tests (at each grid point).

2.3 Extreme indices

To estimate extreme temperature responses to aerosol per-
turbations, we use the “FClimDex” Fortran package (http:
//etccdi.pacificclimate.org/software.shtml) developed by the
Expert Team on Climate Change Detection and Indices
(ETCCDI) to estimate 27 climate extreme indices. Daily
minimum, maximum, and mean surface air temperature is
input to the extremes package for each of our simulations for
which daily data were available, including the control simu-
lation. Cotemporal differences were then taken as for mean
temperature, and we performed modified paired t tests (per-
turbation and control) to assess significance. Extreme tem-
perature analysis was not performed on all of our simula-
tions but rather a subset of simulations that demonstrated
the highest mean temperature response. Further, we only
perform extreme analysis on simulations conducted for at
least 160 years of daily data, as shorter time periods are
not sufficient to build up robust statistics. We discard the
first 20 years of each perturbation simulation (as with the
mean surface temperature analysis) and use the correspond-
ing matching years in the control run when creating the dif-
ferences. We focus our analysis on the TXx index, one of
the most commonly analyzed extreme indices in the existing
literature. TXx is defined as the maximum of the maximum
daily temperature in a given time period (e.g., over a model-
simulated year) (Sillmann et al., 2013). We explored results
using other temperature indices and found the results to be
qualitatively similar to the results for TXx, and thus we do
not include these additional indices in the main text (see Sup-
plement).

3 Global and regional mean surface temperature
responses to regional aerosol emissions

3.1 Comparison across models

Figure 1 shows the ∼ 160–240-year annual mean surface
temperature response in each of the three models for six re-
gional aerosol perturbations. An analogous figure for all of
the remaining simulations can be found in Fig. S1 in the Sup-
plement. The change in temperature in Fig. 1 and all follow-
ing figures is the “perturbation minus control”, representing
the temperature response to a removal or reduction of emis-
sions of anthropogenic aerosols and their precursors. Gen-
erally, the response is overwhelmingly positive (warming)
with large regions of statistical significance in each of the
three models for most simulations. We find a larger temper-
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Table 1. Simulation description and labels and amount of emissions perturbation (roughly the same for each model) in absolute terms and
with the percentage removed.

Simulation Region of emissions Species perturbed Perturbation amount (Tgyr−1), (%)
name perturbation

ESO2 Europe Sulfur dioxide 18 (80 %)
EBC Europe Black carbon 0.8 (100 %)
EOC Europe Organic carbon 2 (100 %)

EALL Europe Sulfur dioxide, black carbon, organic carbon (Sum of above)

USO2 United States Sulfur dioxide 15 (100 %)
UBC United States Black carbon 0.4 (100 %)
UOC United States Organic carbon 0.8 (100 %)

UALL United States Sulfur dioxide (Sum of above)

CSO2 China Sulfur dioxide 15 (80 %)
ISO2 India Sulfur dioxide 5.6 (100 %)
IBC India Black carbon 0.6 (100 %)
IOC India Organic carbon 2.78 (100 %)
SABB South America Biomass burning sulfur dioxide, black carbon, organic carbon 0.4 (SO2), 0.4 (BC), 4.7 (OA) (100 %)
AFBB Africa Biomass burning sulfur dioxide, black carbon, organic carbon 0.4 (SO2), 0.4 (BC), 5.3 (OA) (33 %)

ature response in GFDL CM3 and CESM1 (first and second
columns of Fig. 1) compared to GISS-E2, consistent with the
smaller magnitude of aerosol ERF in GISS-E2 (see Sect. 5)
resulting from a lack of a cloud lifetime effect in that model
(Westervelt et al., 2017, 2018). In all three models, the largest
remote temperature responses are over the Arctic, owing to
the well-established polar amplification phenomenon (Smith
et al., 2019; Stjern et al., 2019). Surface temperature response
is strongest in the US SO2 and Europe SO2 simulations in
all three models, with annual mean local and remote tem-
perature increases of up to 1 K or higher. Despite different
regions of emissions perturbations, the salient features of the
spatial distribution of surface temperature response are sim-
ilar between the US SO2, China SO2, US ALL (SO2, BC,
and organic carbon aerosol (OA) combined), Europe SO2,
and EU ALL (Fig. S1 in the Supplement) perturbations in all
models, suggesting that aerosol forcing in Northern Hemi-
sphere midlatitudes (NHMLs) induces a qualitatively con-
sistent spatial response pattern. This pattern features strong
Arctic warming, differential heating of the Northern Hemi-
sphere compared to the Southern Hemisphere, strong local
responses, and far-reaching remote responses across conti-
nents (e.g., European warming in response to US SO2 emis-
sions reductions). The response pattern is also similar to re-
gional modifications of land surface albedo as reported in
Seneviratne et al. (2018). Climate responses to aerosol per-
turbations can also project onto known modes of climate
variability, such as El Niño–Southern Oscillation (ENSO),
as described in Westervelt et al. (2018). The temperature re-
sponse to US SO2 emissions removal in CESM1 (Fig. 1b)
resembles an El Niño-like response, with cooling in the west-
ern tropical Pacific Ocean coupled with warming in the east-
ern tropical Pacific Ocean. In GFDL CM3, most simula-

tions regardless of region or aerosol species result in cooling
(sometimes statistically significant) south of 60◦ S along the
Antarctic coast starting roughly at the 180◦ meridian coupled
with surrounding statistically significant warming (e.g., EU
SO2, Fig. 1d), suggesting interaction with the Amundsen Sea
Low (ASL), which exerts significant influence on Antarctic
climate (Raphael et al., 2016). However, this is also a region
of strong climate variability in GFDL CM3.

Although the surface temperature response to Indian SO2
and BC emissions reductions is small in all models, despite
the tropical location of the emissions perturbation, changes
in temperature still occur at both poles in all models, with
some statistical significance. Removal of black carbon emis-
sions (Fig. 1p, q, and r) elicits a very different temperature
response in each of the three models in spatial distribution,
sign, and magnitude, indicating a strong dependence of the
surface temperature response on different model assumptions
for black carbon, including different mixing state assump-
tions. Additionally, as reported in Westervelt et al. (2018),
aerosol ERF from India BC perturbations is small (rang-
ing from −0.04 to 0.06 Wm−2 across the three models) and
statistically insignificant, resulting in climate responses that
may be influenced by internal variability. The weak forcing
in the black carbon simulations may also reflect the role of
rapid adjustments (Stjern et al., 2017; Smith et al., 2018), in-
cluding the semi-direct effect of BC on clouds (Allen et al.,
2019). The climate response to BC perturbations in other re-
gions, such as US BC (Fig. S1g and h in the Supplement),
is also marked by disparate temperature responses, further
highlighting the sensitivity of climate response to model
physics, and in some cases representing noise when forcing
signals are small. The role of transport of BC from source
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Figure 1. The 200-year annual mean temperature response (K) to aerosol emissions decrease in each of the three models (GFDL CM3, first
column; NCAR CESM1, second column; GISS-E2, third column) for several different regional emissions decreases (simulations indicated
in figure titles; see Table 1). Hatching represents statistical significance at the 95 % level according to a Student t test with the false discovery
rate method from Wilks (2016) applied.

regions remote to the Arctic may also be a contributor to the
Arctic temperature response (Wang et al., 2014).

3.2 Robustness across models

To estimate robustness of the surface temperature responses
to regional aerosol perturbations, we use the sign (warming

or cooling) and the statistical significance as a point of com-
parison between the three models. Figure 2 shows the agree-
ment between models in sign and statistical significance in
each of the aerosol perturbation simulations that were con-
ducted by all three models. We find widespread agreement in
sign and significance in the US SO2 (Fig. 2a), Europe SO2
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(Fig. 2b), China SO2 (Fig. 2c), and US ALL (SO2, BC, and
OA combined, Fig. 2d) simulations. Using sign agreement in
three models as a minimum for a qualification of robustness
(light blue), the most robust responses are to Europe SO2
removal, where 81 % of the Earth’s surface qualifies as ro-
bust (values in the upper right of Fig. 2 panels). On the other
hand, the response to India BC is robust across only 39 %
of the Earth’s surface. We conclude that climate responses
to black carbon over India exhibit large variability between
models compared to climate responses from source regions
such as the US and Europe, likely due to the small forcing
exerted by the BC perturbation simulations.

The three models frequently agree in the sign and signif-
icance of Arctic warming, indicating that the Arctic surface
temperature response is one of the most robust features of
climate response to regional aerosol perturbations. Local re-
sponses are also robust; in particular the US SO2 and US
ALL perturbations show high levels of robustness (green and
dark blue in Fig. 2a and d) over North America. The models
agree in sign and significance in the remote Arctic tempera-
ture response even in the case of the India BC and African
biomass burning emissions perturbations, suggesting that the
Arctic warming response is somewhat independent of emis-
sions region or aerosol composition. Overall, all three models
agree on sign and at least two report statistical significance
over 32 % of the Earth’s surface (66 % when not including
significance) in response to removal of US SO2 emissions.

3.3 Local and remote responses by region

In Fig. 3, we present the global and regional mean surface
temperature response to 14 different emissions perturbations
in each of the three models. The emissions reductions forc-
ing these temperature changes are roughly the same across
models within a given perturbation scenario (Table 1). The
global mean surface temperature response (Fig. 3a) indicates
warming in 33 of the 34 simulations (US BC in GFDL CM3
being the only example of global cooling) and is significant
at the 95 % confidence level in 30 of the 34 perturbation sim-
ulations. The Europe and US emissions perturbations (e.g.,
ESO2, EALL, USO2) cause the largest global mean temper-
ature increases across all regions and aerosol compositions,
resulting in a global mean warming of about 0.15 K. The SO2
perturbations tend to result in greater warming than OA or
BC (which can also result in global cooling). CESM1 and
GFDL CM3 tend to warm more than GISS-E2, although not
for all simulations.

We break down the regional climate response into latitude
bands, following the approach used by Shindell and Faluvegi
(2009), by regionally averaging the temperature responses
from 60 to 90◦ N (Arctic, Fig. 3b), 30 to 60◦ N (Northern
Hemisphere midlatitudes, NHMLs, Fig. 3c), 30◦ S to 30◦ N
(tropics, Fig. 3d), and 30 to 90◦ S (Southern Hemisphere,
Fig. 3e). Surface temperature increases approach 1 K region-
ally averaged over the Arctic (60 to 90◦ N) in CESM1 and

GFDL CM3, with GISS-E2 simulating smaller but still of-
ten statistically significant warming responses. The Arctic re-
sponds most strongly to European aerosol perturbations (e.g.,
ESO2, EALL), perhaps owing to the greater proximity of
the European continent to the Arctic region. However, even
remote regional aerosol perturbations, such as India SO2
(ISO2) or South American biomass burning (SABB), lead to
Arctic warming in all of the models (Fig. 2), with some statis-
tical significance. NHML temperature changes (Fig. 3c) are
mostly dominated by these local perturbations. On the other
hand, the temperature response to the emissions perturba-
tions local to the tropics (red labels in Fig. 3d) is roughly the
same in magnitude and significance as the response to some
of the “remote” perturbations. Emissions perturbations local
to the tropics exert a larger temperature response in the Arc-
tic than they do either locally or in the closer NHML region.
In the Southern Hemisphere (Fig. 3e), we find consistent, sta-
tistically significant warming in CESM1 but less warming in
GFDL CM3 and GISS-E2, owing to the localized Antarctic
cooling in the case of GFDL CM3. Overall, responses in the
Southern Hemisphere are less statistically significant.

4 Extreme surface temperature responses to regional
aerosol emissions

The response of temperature extremes (TXx, annual maxi-
mum of maximum daily temperature) averaged over the en-
tire 160–240 simulation years is shown in Fig. 4 for each
simulation in each model for which daily data were avail-
able. In addition to the TXx extreme index, we have also
analyzed a series of other indices, however the results are
qualitatively similar so we only present TXx here (see Sup-
plement for additional indices). In general, we find increases
in extreme temperature nearly everywhere both locally and
remotely in most simulations, with a few exceptions such as
the BC aerosol perturbations. Increases in extreme tempera-
ture are as large as 1 K, especially near the source region of
the particular perturbation simulation. Remote increases in
extreme temperature are observed for several perturbations,
for example European SO2 in NCAR CESM1 and GFDL
CM3. Statistical significance is less abundant in GISS-E2,
though we find increases of similar magnitude in GISS-E2
and the other two models. Over land, extreme temperature
(TXx) can be equally or more sensitive to regional aerosol
forcing than mean temperature, which can be seen by com-
paring temperature changes in Figs. 1 and 4. For example,
TXx response to US SO2 is mostly similar in magnitude or
slightly larger than mean temperature over the eastern US
in all three models. In contrast, mean temperature changes
are strong (up to 1 K) over the Arctic, whereas extreme tem-
perature changes (TXx) are much smaller (< 0.3 K) and sta-
tistically insignificant. This is likely caused by the season-
ality of Arctic amplification, which is a robust response to
external forcing in every season except summer. TXx values

www.atmos-chem-phys.net/20/3009/2020/ Atmos. Chem. Phys., 20, 3009–3027, 2020



3016 D. M. Westervelt et al.: Temperature response to aerosols

Figure 2. Regions of robustness in surface temperature response to individual aerosol emissions perturbations (a–h). The different colors
represent the number of models in agreement in sign (two or three) for a particular location, and asterisks indicate whether models agree
that the response is statistically significant (∗∗ for significance in all three or both models, ∗ for significance in two out of three models,
and no asterisks for significance in one or no models). Robustness indicates percentage of the surface area that has all three models in sign
agreement.

mostly reflect summer temperature changes, when the max-
imum temperature throughout the year is likely to occur in
the Northern Hemisphere. We confirm this by showing ex-
treme temperature response for the winter months Decem-
ber, January, and February (DJF, Fig. S2), in which Arctic
extreme temperature responses are larger and consistent with
mean temperature responses. We conclude that the remote re-
sponse relationship between mean and extreme temperatures
is therefore strongly seasonally dependent.

Figure 5 shows the global (a) and latitude band averaged
(b–e) extreme surface temperature response in each of the
model simulations, analogous to Fig. 3 for mean surface tem-
peratures. Another extreme temperature metric TX90p, or
the percentage of days when the daily maximum tempera-
ture is greater than the 90th percentile, is shown in Fig. S3
but is qualitatively similar to Fig. 5. Global mean extreme
surface temperature response is largest in GFDL CM3 and
CESM1 and in the Europe SO2 (ESO2) and US SO2 (USO2)
simulations, in which the TXx response can approach about
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Figure 3. Global annual mean (a) and regional mean by latitude band (b–e) surface temperature responses (K) to each of the 14 aerosol
perturbation simulations. Error bars show ±2 standard errors of the mean to assess statistical significance. Regions that are “local” to the
given latitude band are in red. See Table 1 for definition of abbreviations. Note the different scales in each panel.

0.2 K. Global mean TXx is only statistically significant for
the ESO2 in GFDL CM3 and CESM1, USO2 for CESM1,
and ISO2 for GFDL CM3. Changes in the extreme temper-
atures over the Arctic (Fig. 5b) are close to zero and sta-
tistically insignificant, in contrast to Arctic mean temper-
ature, which was heavily affected by many of the remote
aerosol perturbations, though this is primarily caused by the
seasonal dependence of Arctic amplification, as described
above. TXx responses in the NHMLs (Fig. 5c) are dominated
by local aerosol perturbations, reaching statistically signif-

icant increases of up to 0.4 K, while remote perturbations
have no statistical significance. In the tropics and the South-
ern Hemisphere (Fig. 5d and e), there is almost no signifi-
cant response in TXx to any aerosol perturbation. We con-
clude that although extreme temperature can be increased by
remote aerosol perturbations in a few cases, in general the lo-
cal forcing is a much greater control on extreme temperature,
and remote responses are not nearly as large or significant for
TXx compared to mean surface temperatures.
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Figure 4. The 200-year annual extreme temperature (TXx) responses (K) to aerosol emissions decreases in each of the three models (GFDL
CM3, first column; NCAR CESM1, second column; GISS-E2, third column) for several different regional emissions decreases (simulations
indicated in figure titles; see Table 1). Hatching represents statistical significance at the 95 % level according to a Student t test with the false
discovery rate method from Wilks (2016) applied.

Figure 6 shows the eastern US and global mean surface
temperature probability density function for each model for
the control simulation and USO2 perturbation. Each proba-
bility density function has been normalized such that the area
under the curve is equal to unity. The bars represent the actual
probability density for each temperature value, whereas the

dashed curve is a fitted Gaussian kernel density estimation
of the probably density. In each model both globally and re-
gionally, there is a clear shift in the mean of the distribution,
resulting in additional occurrence of temperature extremes.
Each mean shift is also statistically significant at the 95 %
confidence level, except for the eastern US regional temper-
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Figure 5. Global annual mean (a) and regional mean by latitude band (b–e) extreme temperature responses (K) to each of the 14 aerosol
perturbation simulations. Error bars show ±2 standard errors of the mean to assess statistical significance. See Table 1 for definition of
abbreviations.

ature distributions in GISS-E2. For the spatial average over
the eastern US, the shape of the distributions remains uni-
modal and not skewed in GISS-E2 and GFDL CM3, except
for CESM1, which is not skewed in the control simulation
but skewed in the perturbation. Global mean temperature dis-
tributions are consistently bimodal in the control simulation
and perturbation and generally not skewed. Overall, distribu-
tion shapes are mostly consistent, indicating that a mean shift
is the statistical mechanism behind the increased temperature
extremes.

5 Effective radiative forcing and climate sensitivity

5.1 Effective radiative forcing and surface temperature
response

We use ∼ 80-year fixed-SST and SIC atmosphere-only sim-
ulations in each of the three models to diagnose ERF due
to each aerosol emissions perturbation. The global mean
ERF from the 34 simulations ranges from about −0.1 to
0.3 Wm−2, though all but six simulations (several of the
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Figure 6. Eastern US regional (a, c, e) and global mean (b, d, f) probability density function for control and perturbation simulations in each
model (columns). Dashed line is the Gaussian kernel density estimation for the normalized probability density function.

BC emissions perturbations) have ERF greater than zero. In
Fig. 7, we plot global mean surface temperature response
from the ∼ 200-year coupled model simulations against
global mean ERF for every perturbation simulation. We find
a strong positive correlation among all models (r = 0.64 for
CESM1, r = 0.79 for GFDL CM3, and r = 0.76 for GISS-
E2), consistent with previous studies (Liu et al., 2018; Mar-
vel et al., 2016). There is substantial overlap and a similar
slope for all three models (∼ 0.4K (Wm−2)−1), indicating
that, on a global mean basis, the models are each similarly
sensitive to regional aerosol forcing. We further analyze the
climate sensitivity to aerosol forcing in the following section.

5.2 Global climate sensitivity to regional aerosol
perturbations and global CO2 doubling

For a selection of simulations in which the aerosol ERF
was statistically significant, we calculate in Fig. 8 the cli-
mate sensitivity parameter (K (Wm−2)−1) to the regional
aerosol perturbations as the quotient between the equilib-
rium global surface temperature response from the coupled
model simulations and global ERF using the fixed-SST ap-
proach, similar to the equilibrium climate sensitivity (ECS)
approach used for CO2. We also present the equilibrium cli-
mate sensitivity to a doubling of CO2 (2×CO2) in each
of the three models using the same fixed-SST methodology
for comparison to the aerosol climate sensitivity. We find
that the climate sensitivity parameter for aerosol perturba-
tions varies by model and by forcing, but mostly ranges from
about 0.5 to 1.0 K (Wm−2)−1 in each of the three models,
which is comparable to the values for CO2 sensitivity of ap-
proximately 1.0 K (Wm−2)−1 in GFDL CM3 and CESM1

Figure 7. Scatterplot of global mean surface temperature response
(K) to regional aerosol perturbations (symbols) versus global mean
effective radiative forcing in each model (green: GISS-E2; red:
GFDL CM3; blue: NCAR CESM1).

and 0.5 K (Wm−2)−1 in GISS-E2. Surface temperature ap-
pears to be most sensitive to European SO2 emissions in
GFDL CM3, US SO2 emissions in CESM1, and US ALL
(SO2, BC, and OA combined) emissions in GISS-E2. The
2×CO2 climate sensitivity and the aerosol climate sensitivity
for European SO2, European ALL, and US SO2 are approxi-
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mately equivalent at about 1.0 K (Wm−2)−1 for GFDL CM3
and CESM1. The aerosol climate sensitivity is also in good
agreement (overlapping error bars in Fig. 8) for the US SO2
emissions perturbation between the three models. However,
the aerosol climate sensitivity is often substantially greater
than 2×CO2 climate sensitivity in GISS-E2, consistent with
results from Marvel et al. (2016), discussed further below.
Differences between aerosol climate sensitivity and 2×CO2
climate sensitivity can be explained by the differences in
both the temperature response and the associated ERF for
each perturbation. In particular, ERF may be quite different
between heterogeneous forcing agents relatively smaller in
magnitude such as regional aerosols and large, more globally
homogeneous forcing agents such as CO2. Using 11 models
including GISS-E2, Smith et al. (2018) found that rapid ad-
justments reduce the ERF for BC aerosol but increase the
ERF for CO2 forcing, consistent with the hypothesis that dif-
ferences in ERF can explain differences in the temperature
sensitivities shown in Fig. 8.

Previous work by Marvel et al. (2016) and Hansen et al.
(2005) using only the GISS-E2 climate model found that the
forcing efficacy of global aerosol reductions is greater than
that of CO2. We extend this finding for GISS-E2 to regional
aerosol emissions reductions, as the climate sensitivity pa-
rameter in all but one of our regional aerosol perturbation
simulations in GISS-E2 is larger than the 2×CO2 pertur-
bation. In contrast, the aerosol climate sensitivity parameter
in both GFDL CM3 and CESM1 is smaller than or about
equal to that of 2×CO2. We can conclude at minimum that
aerosol forcing efficacy is model dependent, especially for
regional aerosol perturbations, and this further highlights the
importance of using multiple models to estimate or constrain
estimates of ECS that include forcing from a diverse set of
agents. The CMIP6 experiments may be used to shed further
light on the relative efficacy of aerosol and greenhouse gas
forcing, though not for regional perturbations.

5.3 Regional temperature potential

In addition to the global temperature response and global
ERF, we also estimate the regional temperature sensitivities.
We use the approach of Shindell (2012), who introduced re-
gional temperature potential (RTP) coefficients. These coeffi-
cients account for the spatial heterogeneity of aerosol forcing
and temperature response and can be derived for any pair of
response regions and forcing regions. Following the methods
of Shindell (2012) and Lewinschal et al. (2019), we calcu-
late, within each latitude band, the temperature response to
regional aerosol perturbations as a function of the latitude
band averaged ERF containing each aerosol perturbation re-
gion. We then normalize this quantity by the global mean
equilibrium temperature response to global mean forcing, re-
sulting in a dimensionless coefficient giving the equilibrium
temperature response in latitude band x to forcing in region
y. The response latitude band x can be any of the bands de-

Table 2. Regional temperature potential (RTP) values for GFDL
CM3 for simulations with statistically significant ERF and temper-
ature response.

60–90◦ N 30–60◦ N 30◦ S–30◦ N 30–90◦ S
(Arctic) (NHMLs) (tropics) (SH)

CSO2 1.86 0.54 0.44 0.05
ESO2 2.26 0.58 0.24 0.12
EALL 1.29 0.38 0.18 0.16
USO2 1.43 0.42 0.21 0.09
UALL 1.87 0.32 0.22 0.11
ISO2 2.98 0.45 0.50 0.41
SABB 4.57 0.36 1.21 0.44
AFBB 2.15 0.34 0.26 0.17

Table 3. Regional temperature potential (RTP) values for GISS-E2
for simulations with statistically significant ERF and temperature
response.

60–90◦ N 30–60◦ N 30◦ S–30◦ N 30–90◦ S
(Arctic) (NHMLs) (tropics) (SH)

CSO2 1.34 0.34 0.16 0.22
ESO2 0.62 0.43 0.23 0.12
USO2 0.87 0.37 0.16 0.12
UALL 0.80 0.44 0.15 0.04
SABB 0.97 0.61 0.42 0.37
AFBB 0.98 0.31 0.44 0.45

fined in Fig. 2, whereas forcing regions y are the latitude
bands containing each of our 14 regional aerosol perturbation
locations, either 30–60◦ N (NHMLs) or 30◦ S–30◦ N (trop-
ics). As defined in Shindell (2012), RTP for a given pair of
regions is

RTP=
dTx

dFy

/
dTglobal

dFglobal
, (1)

where dT is change in temperature and dF is change in ERF.
Because of the normalization by global mean temperature
and global mean ERF, the RTP coefficients are unitless.

RTP coefficients in each latitude band for a given aerosol
perturbation region are reported in Table 2 for GFDL CM3,
Table 3 for GISS-E2, and Table 4 for CESM1. We present
only RTP values for which the corresponding ERF and tem-
perature response were statistically significant or for which
data were available. The India, South America, and Africa
entries in Tables 2–4 are based on a forcing average from
the tropics since that region contains almost all of the sta-
tistically significant signal. All other values are based on the
NHML latitude band forcing average. Higher values of RTP
indicate higher sensitivity of the particular response region
to the aerosol forcing regions. RTP values from individual
models provide a range of possible estimates. Figure 9 shows
the multi-model mean RTP coefficients for a selection of re-
gional aerosol perturbation simulations, along with the mean
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Figure 8. Global climate sensitivity to regional aerosol emissions perturbations and to a doubling of CO2 (2×CO2) in each model. Error
bars represent ±2 standard errors around the mean. See Table 1 for definition of abbreviations.

Table 4. Regional temperature potential (RTP) values for CESM1
for simulations with statistically significant ERF and temperature
response.

60–90◦ N 30–60◦ N 30◦ S–30◦ N 30–90◦ S
(Arctic) (NHMLs) (tropics) (SH)

USO2 2.02 0.57 0.20 0.52
AFBB 1.29 0.72 0.97 2.37

Figure 9. Regional temperature potential (RTP) coefficients (unit-
less) for the multi-model mean between GFDL CM3, GISS-E2, and
CESM1 for select simulations and the average by forcing region
(e.g., “NHML tot.” and “Tropics tot.”). Uncertainty bars in the last
two columns indicate the range of the RTP values as reported by the
three models.

of the NHMLs and tropics perturbations grouped together
(“NHML tot.”, “tropics tot.”). Figure 9 indicates that the re-
sponse to NHML forcing is consistent in all response regions
regardless of where the aerosol forcing is longitudinally lo-
cated within the NHMLs, as indicated by the similar RTP
magnitudes in the first four clusters of bars (CSO2, ESO2,
USO2, and UALL). Consistent with our earlier findings in
Fig. 2, the Arctic always emerges as the most sensitive re-
gion to nonlocal aerosol forcing. After the Arctic, regional
sensitivities are greatest for the NHMLs, tropics, and South-
ern Hemisphere (SH) for perturbations in the NHMLs (e.g.,
CSO2, ESO2, USO2, UALL). For tropical perturbations such
as ISO2, SABB, and AFBB, either the SH or the tropics are
most sensitive, after the Arctic. Across each of the aerosol
perturbations, the RTP coefficients are similar in magnitude
when grouped by similar latitudinal forcing locations.

Our findings are similar to those of Shindell (2012), but
we find a higher sensitivity in the Arctic to NHML forcing
(1.49, Fig. 9 “NHML tot.” versus RTP of 0.43 in Shindell,
2012). Shindell (2012) finds the Arctic is most sensitive to lo-
cal forcing but we lack a perturbation simulation to diagnose
that response here. Shindell (2012) reported an Arctic RTP
for tropical forcing of 0.36, close to that of NHML forcing,
indicating that aerosol perturbations in the tropics are also
important for Arctic climate response, which qualitatively
agrees with our findings in Fig. 9. Averaging the RTP val-
ues corresponding to statistically significant ERF and tem-
perature response within a single latitude band (for exam-
ple, average RTP of USO2, ESO2, and CSO2) yields a close
match with Shindell (2012) RTP values, especially in the
NHMLs and tropics. Shindell (2012) reports an RTP of 0.49
for NHML response to NHML forcing, very close to the av-
erage of our NHML forcings in Fig. 9, which is 0.46 (orange
bar in Fig. 9 for “NHML tot.”). The other response regions
(tropics and Southern Hemisphere) compare moderately well
with Shindell (2012) for NHML forcing (0.25 versus 0.15 for
the tropics and 0.1 versus 0.05 for the Southern Hemisphere).
Shindell (2012) used an older model and an idealized forcing
through an entire latitude band as opposed to our more real-
istic localized forcing, which may account for some of the
differences in each region.

The uncertainty range in the final two clusters of bars in
Fig. 9 gives the range of RTP values for the total NHML forc-
ing using the model individual values to construct a high and
low estimate. For the NHML forcing cases, which include
USO2, CSO2, and ESO2, the responses are robust across our
models and there is little intermodel variation, as indicated
by the small uncertainty range in each of the four response
regions under “NHML tot.”. For the tropical forcing cases,
the models diverge (uncertainty bars under “Tropics tot.” in
Fig. 9), especially in the regions remote to the tropics. These
results imply that the use of RTP coefficients or similar sim-
ple climate response metrics for remote responses to forcing
in NHML regions are more robust and reliable than those for
remote responses to forcing in tropical regions.
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6 Summary and conclusions

Using three coupled chemistry–climate models, we conduct
160–240-year simulations in which aerosols of a specific
type and from a specific region are set to zero (or greatly
reduced) and compare to an otherwise identical control sim-
ulation in order to estimate the mean and extreme tempera-
ture response to regional aerosol emissions reductions. We
estimate both the near-source local climate response and the
remote response to regional aerosol emissions for both mean
and extreme temperatures. Removal of regional aerosol emis-
sions almost universally results in warming both globally and
regionally, with some exceptions including perturbations of
black carbon, an absorbing aerosol species. Surface warm-
ing is largest and most robust across models in response to
SO2 emissions reductions, particularly SO2 from Europe and
the US. Using a sign and significance approach to assessing
robustness, we estimate that about 81 % of the global sur-
face area has a robust surface temperature response to Euro-
pean SO2 reduction. All perturbations except for Indian BC
have a spatial robustness of greater than 50 %. Furthermore,
the magnitudes of the responses are in agreement (overlap-
ping ranges in globally and regionally averaged temperature
responses in most perturbation simulations) in CESM1 and
GFDL CM3, but temperature changes are smaller in GISS-
E2 due to weaker aerosol forcing. We find both local and re-
mote statistically significant regional climate responses to re-
gional aerosol emissions perturbations. Local emissions per-
turbations exert a strong warming response in the Northern
Hemisphere midlatitude (NHML) regions including the US
and Europe. Aerosol emission reductions from all world re-
gions that we considered significantly increase mean temper-
ature in the Arctic by up to 1 K (for emissions perturbations
from Europe). Emissions reductions from the NHMLs exert
a warming response in the tropics that rivals the magnitude
of the response to emissions perturbations that are local to
the tropics.

We assess the climate sensitivity to aerosol perturba-
tions in each model and find a range from about 0.5 to
1.0 K (Wm−2)−1. The aerosol climate sensitivity varies by
type of forcing (e.g., SO2, OA, BC) and also magnitude of
forcing and can be different than the 2×CO2 climate sen-
sitivity, due to differences between a heterogeneous, local-
ized aerosol forcing and a more homogeneous CO2 forcing.
Though it has been argued that uncertainty in aerosol forcing
is the major factor in uncertainty of estimates of climate sen-
sitivity to CO2 based on modern observations (Andreae et al.,
2005), less attention has been given to the temperature sensi-
tivity to aerosol forcing itself, in response to both global and
regional aerosol perturbations. In contrast to previous find-
ings using global aerosol reductions (Hansen, 2005; Marvel
et al., 2016), we find that the climate sensitivity to aerosol
forcing is less than or equal to the climate sensitivity to a dou-
bling of CO2 in two of three models, indicating a strong de-
pendence on both model choice and region of aerosol reduc-

tion. Future work using the CMIP6 simulations may shed
light on forcing efficacy of global aerosol reductions using
a large number of models.

We estimate updated RTP coefficients in order to help fa-
cilitate estimation of climate impact metrics at a sub-global
scale. These updated RTP coefficients may be useful for inte-
grated assessment modeling (IAM), such as the Long-range
Energy Alternatives Planning system – Integrated Benefits
Calculator (LEAP–IBC) (Heaps 2016), to calculate climate
impacts across a range of emissions scenarios quickly and ef-
ficiently. We improve on previous studies by providing RTP
coefficients for multiple models and for a large variety of
aerosol types and regional perturbations and by narrowing
the forcing region from latitudinal bands to specific coun-
tries or continents (e.g., US SO2, European SO2). We pro-
vide a multimodel mean RTP as well as the range repre-
sented by individual models. We find that the regional tem-
perature response to Northern Hemisphere midlatitude forc-
ing is largely independent of longitudinal forcing location
within the NHMLs. We also find a small range of intermodel
variability in regional temperature response to NHML forc-
ing, indicating robustness of the RTP coefficients. For aerosol
forcing occurring in the NHMLs, our reported RTP coeffi-
cients are similar to those reported in Shindell (2012), except
for the response in the Arctic, which we find to be more sen-
sitive to NHML forcing. Our results indicate that RTP coef-
ficients for Arctic response to aerosol forcing in the Arctic
may need to be revised upwards, which has implications for
climate impacts and integrated assessment modeling appli-
cations. Further unexpected warming in the Arctic from the
unmasking of aerosol forcing could bring about Arctic cli-
mate tipping points such as permafrost thawing even sooner
than currently projected. Future work will link climate re-
sponses directly to emissions changes for each of our mod-
els, similar to what has been done for NorESM in Lewinschal
et al. (2019).

We also consider the extreme temperature response to re-
gional aerosol perturbations and find that by shifting the
overall surface temperature distribution, aerosol perturba-
tions increase the warming extremes (upper tail of the sur-
face temperature distribution). The annual maximum of max-
imum daily temperatures, or TXx, increases by about 0.1 to
0.2 K globally, closely mirroring the global changes in mean
surface temperature, suggesting a mean shift of the tempera-
ture distribution to warmer temperatures, with limited impact
on the shape of the distribution mainly occurring in only one
of our models. We find the mean shift to be statistically sig-
nificant on a global mean basis in all models and regionally in
two of the three models. Compared to mean surface temper-
atures, extreme temperatures are not very sensitive to remote
aerosol perturbations, with a few exceptions.

The understanding of the major drivers of projected re-
gional climate change is key information needed by the cli-
mate assessment and impact community. Our results have
the potential to provide a framework for a key methodolog-
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ical link between physical science and impacts, adaptation,
and vulnerability analysis. This work is a first step towards
providing statistical relationships between the changes in
regional aerosol emissions and the statistically significant
changes in climate that can be attributed to them. Such rela-
tionships would allow for the generation of regional climate
change scenarios without having to simulate computationally
demanding chemistry–climate models.
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Figure S1: 200-year annual mean surface temperature response response to aerosol emissions 
decreases in each of the three models (GFDL-CM3, first column; NCAR-CESM1, second column; 
GISS-E2, third column) for several different regional emissions decreases (see Table 1) 

 

 
Figure S2: 200-year winter (DJF) extreme temperature (TXx) responses (K) to aerosol emissions decreases in 
each of the three models (GFDL-CM3, first column; NCAR-CESM1, second column; GISS-E2, third column) 
for several different regional emissions decreases (simulations indicated in figure titles; see Table 1). Hatching 
represents statistical significance at the 95% level according to a Student’s t-test with the False Discovery Rate 
method from Wilks (2016) applied. 

 
 



 
Figure S3: Same as Figure 7 but for TX90p.  
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